
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.
Clear["Global`*⋆"]

1 - 10 Adams-Moulton method
Solve the initial value problem by Adams-Moulton (7a), (7b), 10 steps with 1 correction
per step. Solve exactly and compute the error. Use RK where no starting values are given.

1. y'[x] == y, y[0] == 1, h = 0.1, (1.105171, 1.221403, 1.349858)

Using the same settings for NDSolve here as were used in section 21.1, problem 15. It is
not Adams-Moulton, but the automatically adaptive calculation strategy which NDSolve
performs by default.
Clear["Global`*⋆"]

s1 = DSolve[{y'[x] ⩵ y[x], y[0] ⩵ 1}, y[x], x]

{{y[x] → ⅇx}}

p1 = Plot[y[x] /∕. s1, {x, -−1, 4}, PlotStyle → {Blue, Thickness[0.008]}];

s2 = NDSolve[{y'[x] ⩵ y[x], y[0] ⩵ 1}, y, {x, -−1, 4},
AccuracyGoal → ∞, PrecisionGoal → 20, WorkingPrecision → 35]

y → InterpolatingFunction

Domain: {{-−1.0000000000000000000000000000000000, 4.0000000000000000000000000000000000}}
Output: scalar



p2 = Plot[y[x] /∕. s2, {x, -−1, 4}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−1 1 2 3 4

10

20

30

40

50

The agreement between the two functions seems to be at least 9S. The enhancement
options make a difference. For example, when PrecisionGoal was 10 and
WorkingPrecision was 15, then only 7S was achieved.

The agreement between the two functions seems to be at least 9S. The enhancement
options make a difference. For example, when PrecisionGoal was 10 and
WorkingPrecision was 15, then only 7S was achieved.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1, 4, 0.4}]]

{{0.36787944}, {0.36787944}}
{{0.54881164}, {0.54881164}}
{{0.81873075}, {0.81873075}}
{{1.22140280}, {1.22140280}}
{{1.82211880}, {1.82211880}}
{{2.71828180}, {2.71828180}}
{{4.05520000}, {4.05520000}}
{{6.04964750}, {6.04964750}}
{{9.02501350}, {9.02501350}}
{{13.46373800}, {13.46373800}}
{{20.08553700}, {20.08553700}}
{{29.96410000}, {29.96410000}}
{{44.70118400}, {44.70118400}}

3. y'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, h = 0.1,
(0.100335, 0.202710, 0.309336)

Clear["Global`*⋆"]

s1 = DSolvey'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, y[x], x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

{{y[x] → Tan[x]}}

p1 = Plot[y[x] /∕. s1, {x, -−1.4, 1.4}, PlotStyle → {Red, Thickness[0.008]}];

There are developments here with s2. In this case the AccuracyGoal cannot be ∞, because

then Mathematica finds a 10 condition. PrecisionGoal and WorkingPrecision cannot

be sky high without error messages, but as they are set below, they are plenty high enough.

s2 = NDSolvey'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, y, {x, -−1.4, 1.4},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

y → InterpolatingFunction Domain: {{-−1.3999999999999999112, 1.3999999999999999112}}
Output: scalar



p2 =
Plot[y[x] /∕. s2, {x, -−1.4, 1.4}, PlotStyle → {White, Thickness[0.004]}];

2 21.2 Multistep Methods 911.nb

Show[p1, p2]

-−1.0 -−0.5 0.5 1.0

-−6

-−4

-−2

2

4

6

Agreement in the tables between the two solving methods seems to be at least S9.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1.4, 1.4, 0.3}]]

{{-−5.79788370}, {-−5.79788370}}
{{-−1.96475970}, {-−1.96475970}}
{{-−1.02963860}, {-−1.02963860}}
{{-−0.54630249}, {-−0.54630249}}
{{-−0.20271004}, {-−0.20271004}}
{{0.10033467}, {0.10033467}}
{{0.42279322}, {0.42279322}}
{{0.84228838}, {0.84228838}}
{{1.55740770}, {1.55740770}}
{{3.60210240}, {3.60210240}}

5. Do problem 3 by RK

Problem 3 is already as RK as it’s going to get.

7. y'[x] ⩵ 3 y[x] -− 12 y2, y[0] ⩵ 0.2, h = 0.1

Clear["Global`*⋆"]

s1 = DSolvey'[x] ⩵ 3 y[x] -− 12 y[x]2, y[0] ⩵ 0.2, y[x], x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

y[x] →
ⅇ3 x

1 + 4 ⅇ3 x


p1 = Plot[y[x] /∕. s1, {x, -−1.4, 1.4},
PlotStyle → {Orange, Thickness[0.008]}];

21.2 Multistep Methods 911.nb 3

s2 = NDSolvey'[x] ⩵ 3 y[x] -− 12 y[x]2, y[0] ⩵ 0.2, y, {x, -−1.4, 1.4},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

NDSolve::precw:
The precisionof thedifferentialequation(y′[x] ⩵ 3 y[x]-−12y[x]2, y[0] ⩵ 0.2, {}, {}, {}, {}) is lessthanWorkingPrecision(20.)̀. $

y → InterpolatingFunction Domain: {{-−1.3999999999999999112, 1.3999999999999999112}}
Output: scalar



p2 =
Plot[y[x] /∕. s2, {x, -−1.4, 1.4}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−1.0 -−0.5 0.5 1.0

0.05

0.10

0.15

0.20

0.25

Although Mathematica shows a note deprecating its WorkingPrecision, the results look
good to me.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1.4, 1.4, 0.3}]]

{{0.01414701}, {0.01414701}}
{{0.03214128}, {0.03214128}}
{{0.06656382}, {0.06656382}}
{{0.11790104}, {0.11790104}}
{{0.17175878}, {0.17175878}}
{{0.21093405}, {0.21093405}}
{{0.23249357}, {0.23249357}}
{{0.24257382}, {0.24257382}}
{{0.24692656}, {0.24692656}}
{{0.24874125}, {0.24874125}}

9. y'[x] ⩵ 3 x2 (1 + y[x]), y[0] ⩵ 0, h = 0.05

Clear["Global`*⋆"]

s1 = DSolvey'[x] ⩵ 3 x2 (1 + y[x]), y[0] ⩵ 0, y[x], x

y[x] → -−1 + ⅇx3

4 21.2 Multistep Methods 911.nb

In the plot I try to capture all the parts of the function which are interesting.
p1 =

Plot[y[x] /∕. s1, {x, -−1.6, 1.4}, PlotStyle → {Brown, Thickness[0.008]}];

s2 = NDSolvey'[x] ⩵ 3 x2 (1 + y[x]), y[0] ⩵ 0, y, {x, -−1.6, 1.4},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

y → InterpolatingFunction Domain: {{-−1.6000000000000000888, 1.3999999999999999112}}
Output: scalar



p2 =
Plot[y[x] /∕. s2, {x, -−1.6, 1.4}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−1.5 -−1.0 -−0.5 0.5 1.0

-−1

1

2

3

The usual excellent agreement fills the table.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1.6, 1.4, 0.3}]]

{{-−0.98336090}, {-−0.98336090}}
{{-−0.88886393}, {-−0.88886393}}
{{-−0.63212056}, {-−0.63212056}}
{{-−0.29036179}, {-−0.29036179}}
{{-−0.06199500}, {-−0.06199500}}
{{-−0.00099950}, {-−0.00099950}}
{{0.00803209}, {0.00803209}}
{{0.13314845}, {0.13314845}}
{{0.66862511}, {0.66862510}}
{{2.78482630}, {2.78482630}}
{{14.54905700}, {14.54905700}}

21.2 Multistep Methods 911.nb 5

