
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

1 - 10 Adams-Moulton method
Solve the initial value problem by Adams-Moulton (7a), (7b), 10 steps with 1 correction 
per step. Solve exactly and compute the error. Use RK where no starting values are given.

1. y'[x] == y, y[0] == 1, h = 0.1, (1.105171, 1.221403, 1.349858)

Using the same settings for NDSolve here as were used in section 21.1, problem 15. It is 
not Adams-Moulton, but the automatically adaptive calculation strategy which NDSolve 
performs by default. 
Clear["Global`*⋆"]

s1 = DSolve[{y'[x] ⩵ y[x], y[0] ⩵ 1}, y[x], x]

{{y[x] → ⅇx}}

p1 = Plot[y[x] /∕. s1, {x, -−1, 4}, PlotStyle → {Blue, Thickness[0.008]}];

s2 = NDSolve[{y'[x] ⩵ y[x], y[0] ⩵ 1}, y, {x, -−1, 4},
AccuracyGoal → ∞, PrecisionGoal → 20, WorkingPrecision → 35]

y → InterpolatingFunction

Domain: {{-−1.0000000000000000000000000000000000, 4.0000000000000000000000000000000000}}
Output: scalar



p2 = Plot[y[x] /∕. s2, {x, -−1, 4}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]
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The agreement between the two functions seems to be at least 9S. The enhancement 
options make a difference. For example, when PrecisionGoal was 10 and 
WorkingPrecision was 15, then only 7S was achieved.



The agreement between the two functions seems to be at least 9S. The enhancement 
options make a difference. For example, when PrecisionGoal was 10 and 
WorkingPrecision was 15, then only 7S was achieved.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1, 4, 0.4}]]

{{0.36787944}, {0.36787944}}
{{0.54881164}, {0.54881164}}
{{0.81873075}, {0.81873075}}
{{1.22140280}, {1.22140280}}
{{1.82211880}, {1.82211880}}
{{2.71828180}, {2.71828180}}
{{4.05520000}, {4.05520000}}
{{6.04964750}, {6.04964750}}
{{9.02501350}, {9.02501350}}
{{13.46373800}, {13.46373800}}
{{20.08553700}, {20.08553700}}
{{29.96410000}, {29.96410000}}
{{44.70118400}, {44.70118400}}

3. y'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, h = 0.1,
(0.100335, 0.202710, 0.309336)

Clear["Global`*⋆"]

s1 = DSolvey'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, y[x], x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

{{y[x] → Tan[x]}}

p1 = Plot[y[x] /∕. s1, {x, -−1.4, 1.4}, PlotStyle → {Red, Thickness[0.008]}];

There are developments here with s2. In this case the AccuracyGoal cannot be ∞, because 

then Mathematica finds a 10  condition. PrecisionGoal and WorkingPrecision cannot 

be sky high without error messages, but as they are set below, they are plenty high enough.

s2 = NDSolvey'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, y, {x, -−1.4, 1.4},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

y → InterpolatingFunction Domain: {{-−1.3999999999999999112, 1.3999999999999999112}}
Output: scalar



p2 =
Plot[y[x] /∕. s2, {x, -−1.4, 1.4}, PlotStyle → {White, Thickness[0.004]}];
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Show[p1, p2]
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Agreement in the tables between the two solving methods seems to be at least S9.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1.4, 1.4, 0.3}]]

{{-−5.79788370}, {-−5.79788370}}
{{-−1.96475970}, {-−1.96475970}}
{{-−1.02963860}, {-−1.02963860}}
{{-−0.54630249}, {-−0.54630249}}
{{-−0.20271004}, {-−0.20271004}}
{{0.10033467}, {0.10033467}}
{{0.42279322}, {0.42279322}}
{{0.84228838}, {0.84228838}}
{{1.55740770}, {1.55740770}}
{{3.60210240}, {3.60210240}}

5.  Do problem 3 by RK

Problem 3 is already as RK as it’s going to get.

7. y'[x] ⩵ 3 y[x] -− 12 y2, y[0] ⩵ 0.2, h = 0.1

Clear["Global`*⋆"]

s1 = DSolvey'[x] ⩵ 3 y[x] -− 12 y[x]2, y[0] ⩵ 0.2, y[x], x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

y[x] →
ⅇ3 x

1 + 4 ⅇ3 x


p1 = Plot[y[x] /∕. s1, {x, -−1.4, 1.4},
PlotStyle → {Orange, Thickness[0.008]}];
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s2 = NDSolvey'[x] ⩵ 3 y[x] -− 12 y[x]2, y[0] ⩵ 0.2, y, {x, -−1.4, 1.4},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

NDSolve::precw:
The precisionof thedifferentialequation(y′[x] ⩵ 3 y[x]-−12y[x]2, y[0] ⩵ 0.2, {}, {}, {}, {}) is lessthanWorkingPrecision(20. )̀. $

y → InterpolatingFunction Domain: {{-−1.3999999999999999112, 1.3999999999999999112}}
Output: scalar



p2 =
Plot[y[x] /∕. s2, {x, -−1.4, 1.4}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]
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Although Mathematica shows a note deprecating its WorkingPrecision, the results look 
good to me.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1.4, 1.4, 0.3}]]

{{0.01414701}, {0.01414701}}
{{0.03214128}, {0.03214128}}
{{0.06656382}, {0.06656382}}
{{0.11790104}, {0.11790104}}
{{0.17175878}, {0.17175878}}
{{0.21093405}, {0.21093405}}
{{0.23249357}, {0.23249357}}
{{0.24257382}, {0.24257382}}
{{0.24692656}, {0.24692656}}
{{0.24874125}, {0.24874125}}

9. y'[x] ⩵ 3 x2 (1 + y[x]), y[0] ⩵ 0, h = 0.05

Clear["Global`*⋆"]

s1 = DSolvey'[x] ⩵ 3 x2 (1 + y[x]), y[0] ⩵ 0, y[x], x

y[x] → -−1 + ⅇx3
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In the plot I try to capture all the parts of the function which are interesting.
p1 =

Plot[y[x] /∕. s1, {x, -−1.6, 1.4}, PlotStyle → {Brown, Thickness[0.008]}];

s2 = NDSolvey'[x] ⩵ 3 x2 (1 + y[x]), y[0] ⩵ 0, y, {x, -−1.6, 1.4},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

y → InterpolatingFunction Domain: {{-−1.6000000000000000888, 1.3999999999999999112}}
Output: scalar



p2 =
Plot[y[x] /∕. s2, {x, -−1.6, 1.4}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]
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The usual excellent agreement fills the table.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1.6, 1.4, 0.3}]]

{{-−0.98336090}, {-−0.98336090}}
{{-−0.88886393}, {-−0.88886393}}
{{-−0.63212056}, {-−0.63212056}}
{{-−0.29036179}, {-−0.29036179}}
{{-−0.06199500}, {-−0.06199500}}
{{-−0.00099950}, {-−0.00099950}}
{{0.00803209}, {0.00803209}}
{{0.13314845}, {0.13314845}}
{{0.66862511}, {0.66862510}}
{{2.78482630}, {2.78482630}}
{{14.54905700}, {14.54905700}}
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