Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

Clear["Global™ *"]

1 - 10 Adams-Moulton method
Solve the initial value problem by Adams-Moulton (7a), (7b), 10 steps with 1 correction
per step. Solve exactly and compute the error. Use RK where no starting values are given.

1.y[x] ==vy,y[0] == 1,h = 0.1, (1.105171, 1.221403, 1.349858)

Using the same settings for NDSolve here as were used in section 21.1, problem 15. It is
not Adams-Moulton, but the automatically adaptive calculation strategy which NDSolve
performs by default.

Clear["Global™ *x"]
sl =DSolve[{y'[x] ==y[x], y[O0] =1}, y[x], x]

{{y[x] » e*}}

pl =Plot[y[x] /. sl, {x, -1, 4}, PlotStyle » {Blue, Thickness[0.008]}];

s2 = NDSolve[{y'[x] ==y[x], y[0] =1}, vy, {x, -1, 4},
AccuracyGoal » o, PrecisionGoal » 20, WorkingPrecision - 35]

{{y - InterpolatingFunction[

Domain {{-1 .000000000000000000000000000000[)41000000000000OOOOOOOOOOOOOOOODOOﬂ } }
Outputscalar

P2 = Plot[y[x] /. s2, {x, -1, 4}, PlotStyle » {White, Thickness[0.004]}];

Show[pl, p2]
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The agreement between the two functions seems to be at least 9S. The enhancement
options make a difference. For example, when PrecisionGoal was 10 and
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WorkingPrecision was 15, then only 7S was achieved.

TableForm|[

Table [NumberForm[{y[x] /. sl, y[x] /. s2}, {8, 8}], {x, -1, 4, 0.4}]]
{{0.36787944}, {0.36787944}}
{{0.54881164}, {0.54881164}}
{{0.81873075}, {0.81873075}}
{{1.22140280}, {1.22140280}}
{{1.82211880}, {1.82211880}}
{{2.71828180}, {2.71828180}}
{{4.05520000}, {4.05520000}}
{{6.04964750}, {6.04964750}}
{{9.02501350}, {9.02501350}}
{{13.46373800}, {13.46373800}}
{{20.08553700}, {20.08553700}}
{{29.96410000}, {29.96410000}}
{{44.70118400}, {44.70118400}}

3. y'[x] =1+y[x]?, y[0]=0, h=0.1,
(0.100335, 0.202710, 0.309336)

Clear["Global™ x"]

sl =DSolve[{y'[x] =1+y[x]?, y[0] =0}, y[x], %]

Inversefunctionare beingusedby Solveg so somesolutionsnaynotbe found use Reduceforcompletesolutiorinformations

{{y[x] » Tan[x]}}

pl =Plot[y[x] /.sl, {x, -1.4, 1.4}, PlotStyle » {Red, Thickness[0.008]}];
There are developments here with s2. In this case the AccuracyGoal cannot be o, because

. . 1 . .. . s s
then Mathematica finds a o condition. PrecisionGoal and WorkingPrecision cannot

be sky high without error messages, but as they are set below, they are plenty high enough.

sZ::NDSolve[{y'[x]==1-+y[x]2, y[O]::O}, y, {x, -1.4, 1.4},

AccuracyGoal - 16, PrecisionGoal - 16, WorkingPrecision-ezo]

{{Y - InterpolatingFunction[ Domain {{-1.39999999999999991,1239999999999999991}] 2 ] }}

Outputscalar

p2 =
Plot[y[x] /.s2, {x, -1.4, 1.4}, PlotStyle » {White, Thickness[0.004]}];



Show[pl, p2]
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Agreement in the tables between the two solving methods seems to be at least S9.

TableForm|[

Table [NumberForm[{y[x] /. sl, y[x] /. s2}, {8, 8}], {x, -1.4, 1.4, 0.3}]]

{{-5.79788370}, {-5
{{-1.96475970}, {-1

.79788370}}
.96475970}}
{{-1.02963860}, {-1.
{{-0.54630249}, {-O.
{{-0.20271004}, {-O.

02963860} }
54630249} }
20271004} }

{{0.10033467}, {0.10033467}}
{{0.42279322}, {0.42279322}}
{{0.84228838}, {0.84228838}}
{{1.55740770}, {1.55740770}}
{{3.60210240}, {3.60210240}}

5. Do problem 3 by RK

Problem 3 is already as RK as it’s going to get.

7. v'[x] =3y[x] -12y?, y[0] =0.2, h=0.1

Clear["Global™ *"]

sl =DSolve[{y'[x] =3 y[x] - 12y[x]?, y[0] =0.2}, y[x], %]

Inversefunctionsre beingusedby Solveg so somesolutionsnaynotbe found use Reduceforcompletesolutiorinformatiorss

3x

(=l

pl =Plot[y[x] /.sl1l, {x, -1.4, 1.4},

PlotStyle » {Orange, Thickness[0.008]}];
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s2 =NDSolve[{y' [x] =3y[x] - 12y[x]2%, y[O] ==0.2}, v, {x, -1.4, 1.4},

AccuracyGoal - 16, PrecisionGoal -» 16, WorkingPrecision - 20]
The precisiorofthedifferentiaéquatior({{y’[x] = 3 y[x] —12y[x]?, y[0] = 0.2}, {}, 1, 1}, (1) islessthanWorkingPrecisio@0.). >

{{Y N InterpolatingFunction[ /\/ Domain {{-1.39999999999999991,1239999999999999991}] 2 ] }}

Outputscalar

p2 =
Plot[y[x] /.s2, {x, -1.4, 1.4}, PlotStyle » {White, Thickness[0.004]}];

Show[pl, p2]
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Although Mathematica shows a note deprecating its WorkingPrecision, the results look
good to me.

TableForm|[
Table [NumberForm[ {y[x] /. sl, y[x] /. s2}, {8, 8}], {x, -1.4, 1.4, 0.3}]]

{{0.01414701}, {0.01414701}}
{{0.03214128}, {0.03214128}}
{{0.06656382}, {0.06656382}}
{{0.11790104}, {0.11790104}}
{{0.17175878}, {0.17175878}}
{{0.21093405}, {0.21093405}}
{{0.23249357}, {0.23249357}}
{{0.24257382}, {0.24257382}}
{{0.24692656}, {0.24692656}}
{{0.24874125}, {0.24874125}}

9. y'[x] =3%x% (1 +y[x]), y[0] =0, h=0.05
Clear["Global™ *"]

sl =DSolve[{y' [x] =3x2 (1 +y[x]), y[0] = O}, vIix], x]

{{vix]>-1+e*}}
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In the plot I try to capture all the parts of the function which are interesting.

pl=
Plot[y[x] /.sl, {x, -1.6, 1.4}, PlotStyle » {Brown, Thickness[0.008]}];

s2 = NDSolve[{y'[x] =3 x% (1 +y[x]), y[0] =0}, v, {x, -1.6, 1.4},

AccuracyGoal » 16, PrecisionGoal » 16, WorkingPrecision - 20]

{{Y - InterpolatingFunction[ /\/ go;T;aItns{g;:a.?000000000000000881839999999999999991}]2 ] }}
utpu

p2 =
Plot[y[x] /.s2, {x, -1.6, 1.4}, PlotStyle » {White, Thickness[0.004]}];

Show[pl, p2]

1+

The usual excellent agreement fills the table.

TableForm|[
Table [NumberForm[ {y[x] /. sl, y[x] /. s2}, {8, 8}], {x, -1.6, 1.4, 0.3}]]

{{-0.98336090}, {-0.98336090}}
{{-0.88886393}, {-0.88886393}}
{{-0.63212056}, {-0.63212056}}
{{-0.29036179}, {-0.29036179}}
{{-0.06199500}, {-0.06199500}}
{{-0.00099950}, {-0.00099950}}
{{0.00803209}, {0.00803209}}
{{0.13314845}, {0.13314845}}
{{0.66862511}, {0.66862510}}
{{2.78482630}, {2.78482630}}
{{14.54905700}, {14.54905700}}



